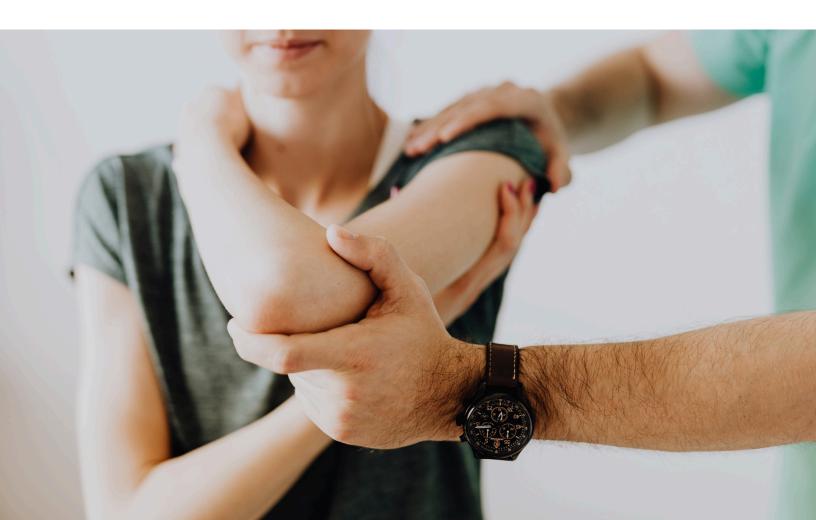


Orthopedic Shockwave Therapy:

Harnessing Acoustic Energy for Musculoskeletal Healing

Executive Summary


Orthopedic shockwave therapy—also known as extracorporeal shock wave therapy (ESWT) — is reshaping the landscape of musculoskeletal medicine. Originally designed for lithotripsy, its therapeutic benefits for bone and soft tissue repair were discovered serendipitously. Today, ESWT represents a powerful, non-invasive alternative to surgical intervention, offering clinicians a tool that bridges mechanical physics with cellular biology. This white paper explores the science, clinical applications, and future directions of ESWT, positioning it as a pivotal technology in modern orthopedic care.

Did you know?

Shockwave therapy was originally developed to break up kidney stones, its orthopedic potential was discovered by accident.

Introduction: From Stones to Bones

Medical innovation often begins with unexpected observations. In the case of shockwave therapy, a technology designed to fragment kidney stones revealed an unintended benefit: enhanced bone density in surrounding tissue. This discovery sparked decades of research, adaptation, and clinical validation that now places ESWT at the forefront of orthopedic treatment strategies.

The Science Behind the Therapy

The Physics of Shockwaves

- High-energy acoustic pulses: Rapid rise in pressure, high peak intensity, and short duration.
- Dual effects:
 - Mechanical: Inducing controlled microtrauma.
 - Biological: Triggering healing cascades.

Biological Cascade

- · Microtrauma increases local blood flow.
- Angiogenesis stimulates new vessel formation.
- Growth factor recruitment accelerates tissue repair.
- At the cellular level, ESWT promotes osteogenesis by activating ATP-mediated pathways and receptor signaling.

Takeaway: ESWT transforms mechanical energy into biological regeneration.

Clinical Applications

Chronic Tendinopathies

- Achilles tendon, patellar tendon, and lateral epicondylitis respond well to ESWT.
- · Reduced pain and faster return to function.

Calcific Tendinitis of the Shoulder

· Breaks down calcific deposits while promoting tendon healing.

Non-Union Fractures

- · Comparable to surgical repair with fewer risks.
- Stimulates osteogenic activity critical for bone bridging.

Osteoarthritis

- Particularly effective in knee osteoarthritis.
- Improves pain, joint function, and cartilage quality.

Insight: Radial vs. Focused

ESWT differ in depth and precision but achieve overlapping clinical outcomes.

Technology Landscape

Focused ESWT (F-ESWT)

- Generates concentrated energy at precise tissue depths.
- Preferred for deep structures and localized lesions.

Radial Pressure Wave Therapy

- Disperses energy radially.
- Effective for superficial and broader treatment areas.

Despite technical differences, both approaches share similar therapeutic outcomes across musculoskeletal conditions.

Clinical Advantages

- Non-invasive: No surgical incisions or implants.
- Reduced downtime: Patients resume daily activities quickly.
- Lower risk profile: Compared to operative interventions.
- Adjunctive potential: Complements physical therapy, regenerative injections, and post-surgical recovery.

The Road Ahead

While clinical evidence is robust, key questions remain:

- What are the optimal treatment protocols by condition?
- How do specific molecular pathways govern long-term outcomes?
- Can ESWT synergize with biologic therapies (e.g., PRP, stem cells)?

Future research promises to expand the role of ESWT beyond pain relief, into **precision** regenerative orthopedics.

Conclusion

Orthopedic shockwave therapy represents a convergence of physics and biology — delivering acoustic energy that initiates profound healing responses. With proven applications across tendinopathies, bone injuries, and osteoarthritis, ESWT is redefining conservative musculoskeletal management. As evidence grows and technology advances, its role is likely to expand, offering patients an effective and less invasive path to recovery.

Rudy Inaba, SVP of Performance Health

Develops industry-leading health performance strategies, products, and service offerings. With over two decades of experience in clinical exercise physiology and lifestyle management, Rudy leads a global team of performance health coaches.

Discover how Cenegenics leverages advanced therapies like shockwave treatment to optimize health and performance.

Visit our <u>main website</u> for more information or explore <u>our blog</u> for deeper clinical insights.

References:

Burton, I. (2020). Combined extracorporeal shockwave therapy and exercise for the treatment of tendinopathy: a narrative review.. https://doi.org/10.31236/osf.io/h64ja

Chamberlain, G. and Colborne, G. (2016). A review of the cellular and molecular effects of extracorporeal shockwave therapy. Veterinary and Comparative Orthopaedics and Traumatology, 29(02), 99-107. https://doi.org/10.3415/vcot-15-04-0057

Cheng, J. and Wang, C. (2015). Biological mechanism of shockwave in bone. International Journal of Surgery, 24, 143-146. https://doi.org/10.1016/j.ijsu.2015.06.059

Haffner, N., Antonic, V., Smolen, D., Slezak, P., Schaden, W., Mittermayr, R., ... & Stojadinovic, A. (2016). Extracorporeal shockwave therapy (eswt) ameliorates healing of tibial fracture non-union unresponsive to conventional therapy. Injury, 47(7), 1506-1513. https://doi.org/10.1016/j.injury.2016.04.010

Li, T., Chang, C., Chou, Y., Chen, L., Chu, H., Chiang, S., ... & Wu, Y. (2016). Effect of radial shock wave therapy on spasticity of the upper limb in patients with chronic stroke. Medicine, 95(18), e3544. https://doi.org/10.1097/md.00000000000003544

Li, T., Ma, J., Zhao, T., Gao, F., & Sun, W. (2019). Application and efficacy of extracorporeal shockwave treatment for knee osteoarthritis: a systematic review and metaanalysis. Experimental and Therapeutic Medicine. https://doi.org/10.3892/etm.2019.7897

Liao, C., Tsauo, J., Liou, T., Chen, H., & Huang, S. (2019). Clinical efficacy of extracorporeal shockwave therapy for knee osteoarthritis: a systematic review and meta-regression of randomized controlled trials. Clinical Rehabilitation, 33(9), 1419-1430. https://doi.org/10.1177/0269215519846942

Mittermayr, R., Haffner, N., Feichtinger, X., & Schaden, W. (2021). The role of shockwaves in the enhancement of bone repair - from basic principles to clinical application. Injury, 52, S84-S90. https://doi.org/10.1016/j.injury.2021.02.081

Moya, D., Ramón, S., Schaden, W., Wang, C., Guiloff, L., & Cheng, J. (2018). The role of extracorporeal shockwave treatment in musculoskeletal disorders. The Journal of Bone and Joint Surgery (American), 100(3), 251-263. https://doi.org/10.2106/jbjs.17.00661

Shrivastava, S. (2005). Shock wave treatment in medicine. Journal of Biosciences, 30(2), 269-275. https://doi.org/10.1007/bf02703708

Sun, D., Junger, W., Chang-ji, Y., Zhang, W., Bao, Y., Qin, D., ... & Yu, T. (2013). Shockwaves induce osteogenic differentiation of human mesenchymal stem cells through atp release and activation of p2x7 receptors. Stem Cells, 31(6), 1170-1180. https://doi.org/10.1002/stem.1356

Wang, C. (2012). Extracorporeal shockwave therapy in musculoskeletal disorders. Journal of OrthopaedicSurgery and Research, 7(1), 11. https://doi.org/10.1186/1749-799x-7-11

Wuerfel, T., Schmitz, C., & Jokinen, L. (2022). The effects of the exposure of musculoskeletal tissue to extracorporeal shock waves. Biomedicines, 10(5), 1084. https://doi.org/10.3390/biomedicines10051084